All Issue

2024 Vol.26, Issue 3

Research article

December 2024. pp. 113-120
Abstract
References
1

Baek, G.H., Kim, J.A., Lee, C.A., 2019. Review of the effects of iron compounds on methanogenesis in anaerobic environments. Renewable and Sustainable Energy Reviews, 113, 109282.

10.1016/j.rser.2019.109282
2

Baek, G.H., Kim, J.A., Kim, J.S., Lee, C.S., 2018. Role and potential of direct interspecies electron transfer in anaerobic digestion. Energies, 11(1), 107.

10.3390/en11010107
3

Corona, A.M.F., Reza, A.O., Moreno, D.A., 2021. Biostimulation of food waste anaerobic digestion supplemented with granular activated carbon, biochar and magnetite: A comparative analysis. Biomass Bioenergy, 149, 106105.

10.1016/j.biombioe.2021.106105
4

Duncan, D.B., 1955. Multiple range and multiple F tests. Biometrics, 11(1).

10.2307/3001478
5

El-Qelish, M., Elgarahy, A.M., Ibrahim, H.S., El-Kholly, H.K., Gad, M., Ali, M.E.M., 2023. Multi-functional core-shell pomegranate peel amended alginate beads for phenol decontamination and bio-hydrogen production: Synthesis, characterization, and kinetics investigation. Biochemical Engineering Journal, 195, 108932.

10.1016/j.bej.2023.108932
6

Ghada, K., Dima, K., Fadwa, O., Khaldoun, S., Mazen, A., Jules, B.V.L., 2020. Impact of nanoscale magnetite and zero valent iron on the batch-wise anaerobic co-digestion of food waste and waste-activated sludge. Water, 12(5), 1283.

10.3390/w12051283
7

Hu, Y., Wang, F., Chi, Y., 2020. The evolution of microbial community during acclimation for high sodium food waste anaerobic digestion. Water and Biomass Valorization, 11, 6057-6063.

10.1007/s12649-019-00851-2
8

Kato, S., Hashimoto, K., Watanabe, K., 2012. Microbial interspecies electron transfer via electric currents through conductive minerals. Proceedings of the National academy of USA, 109(25), 10042-10046.

10.1073/pnas.111759210922665802PMC3382511
9

KEITI [Korea Environmental Industry and Technology Institute], 2016. Trends in land treatment of food wastewater.

10

Kim T.B., Lee J.H., Yoon Y.M., 2024. Residence time reduction in anaerobic reactors: investigating the economic benefits of magnetite-induced direct interspecies electron transfer mechanism. Energies, 17(2), 358.

10.3390/en17020358
11

Kim, S.Y., Bae, G.S., Lee, J.H., Yoon, Y.M., Kim, C.H., 2023. Effects of magnetite (Fe3O4) as an electrical conductor of direct interspecies electron transfer on methane production from food wastewater in a plug flow reactor. Processes, 11(10), 3001.

10.3390/pr11103001
12

Lee, J.H., Lee, J.H., Kim, S.Y., Yoon, Y.M., 2023a. Effect of addition of zero-valent Iron (Fe) and Magnetite (Fe3O4) on methane yield and microbial consortium in anaerobic digestion of food wastewater. Processes, 11,759.

10.3390/pr11030759
13

Lee, J.H., Kim, T.B., Kim, C.H., Yoon, Y.M., 2023b. Effects of magnetite (Fe3O4) as electrical conductor of direct interspecies electron transfer on methane yield of food wastewater. Journal of the Korea Organic Resources Recycling Association, 31(1), 15-26.

14

Lee, J.H., Yoon, Y.M., 2022. Analysis of methane production efficiency improvement effect by hydrothermal carbonization reaction in combined process of anaerobic digestion and hydrothermal carbonization of livestock manure. Journal of Animal Enviromental Science, 24(3), 107-116.

10.11109/JAES.2022.24.3.107
15

Li, D., Song, L., Fang, H., Li, P., Teng, Y., Li, Y.Y., Liu, R., Niu, Q., 2019. Accelerated bio-methane production rate in thermophilic digestion of cardboard with appropriate biochar: Dose-response kinetic assays, hybrid synergistic mechanism, and microbial networks analysis. Bioresource Technology, 290, 121782.

10.1016/j.biortech.2019.12178231326650
16

Lise, A., Jan, B., Jan, D., Raf, D., 2008. Principles and potential of the anaerobic digestion of waste-activated sludge. Int. Biodeterior. Biodegrad, 132, 114-121.

17

ME, 2020. Livestock manure generation and treatment status, Ministry of Environment, Sejong, Korea.

18

Meegoda, J.N., Li, B., Patel, K., Wang, L.B., 2018. A review of the processes, parameters, and optimization of anaerobic digestion. International Journal of Environmental Research and Public Health, 15, 2224.

10.3390/ijerph1510222430314318PMC6210450
19

Moreno, A.G.S., Cerón, N.E., Hernández, V.A., Eugenio, H.G., Méndez, A.M.Á., Solares, A.T., 2020. Enhancing methane yield of chicken litter in anaerobic digestion using magnetite nanoparticles. Renewable Energy, 147(1), 204-213.

10.1016/j.renene.2019.08.111
20

Morita, M., Malvankar, N.S., Franks, A.E., Summers, Z.M., Giloteaux, L., Rotaru, A.E., Rotaru, C., Lovley, D.R., 2011. Potential for direct interspecies electron transfer in methanogenic wastewater digester aggregates. American Society for Microbiology, 2(4), p. e00159-11.

10.1128/mBio.00159-1121862629PMC3157894
21

Oh, S.Y., Yoon, Y.M., 2017. Energy recovery efficiency of poultry slaughterhouse sludge cake by hydrothermal carbonization. Energies, 10(11), 1876.

10.3390/en10111876
22

Rice, E., Baird, R., Eaton, A., Clesceri, L., 2012. APHA (American Public Health Association): Standard method for the examination of water and wastewater. Washington DC (US): AWWA (American Water Works Association) and WEF (Water Environment Federation).

23

Rotaru, A.E., Shrestha, P.M., Liu, F., Markovaite, B., Chen, S., Nevin, K.P., Lovely, D.R., 2014. Direct interspecies electron transfer between Geobacter me tallireducens and Methanosarcina barkeri. Applied and environmental microbiology, 80(15), 4599-4605.

10.1128/AEM.00895-1424837373PMC4148795
24

Sørensen, A.H., Winther-Nielsen, M., Ahring, B.K., 1991. Kinetics of lactate, acetate and propionate in unadapted and lactate-adapted thermophilic, anaerobic sewage sludge: the influence of sludge adaptation for start-up of thermophilic UASB-reactors. Applied microbiology and biotechnology, 34(6), 823-827.

10.1007/BF00169358
25

Yeo, J., Kim, C.G., Lee, J.H., Song, E.H., Yoon, Y.M., 2023. Effects of water potential on anaerobic methane production and a microbial consortium. Fermentation, 9(3), 244.

10.3390/fermentation9030244
26

Yin, Q., Miao, J., Li, B., Wu, G., 2017. Enhancing electron transfer by ferroferric oxide during the anaerobic treatment of synthetic wastewater with mixed organic carbon. International Biodeterioration & Biodegradation, 119, pp. 104-110.

10.1016/j.ibiod.2016.09.023
27

Zhang, J., Lu, T., Wang, Z., Wang, Y., Zhong, H., Shen, P., Wei, Y., 2019. Effects of magnetite on anaerobic digestion of swine manure: Attention to methane production and fate of antibiotic resistance genes. Bioresource Technology, 291, 121847.

10.1016/j.biortech.2019.12184731357044
28

Zhao, Z., Zhang, Y., Woodard, T.L., Nevin, K.P., Lovley, D.R., 2015. Enhancing syntrophic metabolism in up-flow anaerobic sludge blanket reactors with conductive carbon materials. Bioresource Technology, 191, 140-145.

10.1016/j.biortech.2015.05.00725989089
29

Zhuang, L., Tang, J., Wang, Y., Hu, M., Zhou, S., 2015. Conductive iron oxide minerals accelerate syntrophic cooperation in methanogenic benzoate degradation. Jounal of Hazardous Materials, 293, 37-45.

10.1016/j.jhazmat.2015.03.03925827267
Information
  • Publisher :The Korean Society of Animal Environmental Science & Technology
  • Publisher(Ko) :(사)한국축산환경학회
  • Journal Title :Journal of Animal Environmental Science
  • Journal Title(Ko) :축산시설환경학회지
  • Volume : 26
  • No :3
  • Pages :113-120
  • Received Date : 2024-11-12
  • Revised Date : 2024-12-10
  • Accepted Date : 2024-12-16